

Vivato

Mike Scullin VP, Business Development and Government Affairs

miceOriente.mef - g-wairato.cof

Wi-Fi Switching: Next Generation Wi-Fi Infrastructure

Creating the New <u>Wi-Fi Physics</u>

Delivering the New <u>Wi-Fi Economics</u>

Vivato's Mission

- > Wi-Fi Switch Manufacturer
 - Industry standard Wi-Fi wireless network infrastructure for IEEE 802.11b/a/g ...
- > Scale Wi-Fi to the enterprise (and beyond)
 - Support standard Wi-Fi client hardware and software
 - Deliver high QoS client performance to 54 Mbps
 - Floor/building/campus/metro coverage
 - > Outdoor service to 4 km
 - >Indoor service to 1 km
 - · Capacity scales to a gigabit
 - Enterprise class security and management
- > Lowest cost of deployment and ownership
 - Universal deployment of Wi-Fi in client platforms

A Brief History

- > Company founded 12/00
- > Technology demo 9/01
- > Launched company 11/02
- > Received FCC certification for Wi-Fi Switch prototype 12/02
- > Shipped beta units 2/03
- > Vivato 2.4 GHz Indoor Wi-Fi Switch announced 2/03 at Demo 2003
- > Intel investment/partnership 2/2003
- > Vivato 2.4 GHz Outdoor W-Fi Switch announced at CTIA 3/2003
- > GA Shipments 5/2003

Wi-Fi Poised for Success The New Ethernet

- >802.11b is a stealth success -> like 10BaseT
 - Departmental networks like 10BaseT Ethernet
 - Faster platform adoption than Ethernet
 - >20% laptop penetration today
 - > Intel Centrino drives to >70% penetration
- > 802.11a/g will catalyze the market -> 100BaseT
 - · Challenge of coverage vs. speed
 - IT begins to centralize with 802.11b -> g/a
- > Challenges of scale -> hubs/bridges not enough!
 - Micro-cellular limitations
 - Security, Manageability, Configuration, Coverage, Capacity, Cost

The Challenges of Scale

- > Brute force micro-cellular tough to scale
 - Like Enet hubs and bridges
 - Lack of coverage
 - > Higher speed often means shorter distance
 - Lack of capacity
 - > Interference, unpredictability of speed
 - · Lack of manageability
 - Cost increasingly dominated by labor and infrastructure not infrastructure electronics
 - Reality check of radio interference and range
- > Time to reexamine assumptions
 - Ethernet switching ubiquitous today
 - Asymmetric infrastructure
 - > Move labor cost to Moore's law cost
 - Wi-Fi Switching needed!

Willer E W E W W W H E R E

Wi-Fi Switching

- > Asymmetric Infrastructure
 - Replace infrastructure labor cost with Moore's Law cost
- > Existing clients
 - Backward compatible to current Wi-Fi clients
 - Platform for future clients
 - > Increased features: speed, QoS, management
- > Increased coverage
 - Decreased cost of deployment
 - Allows increased speed
 - > 802.11b->802.11a
 - New markets: hot zone >>> "first mile"
- > Increased capacity
 - Multiple simultaneous clients
 - Space, frequency and time multiplexing
- > Management and security
 - · Best of class

Creating the New Wi-Fi Physics

- > Planar phased array antenna
 - · enables multiple shaped packet beams
- > Narrow packet beams transmit and receive
 - Narrow beams with high EIRP transmission
 - Large aperture for increased sensitivity reception
 - · Power beamed only where it is needed
- > Dramatically higher range
 - Up to 4 kilometers outdoors with a conventional Wi-Fi client.
 - Up to 1 kilometer to an indoor Wi-Fi client.
- > Higher overall capacity
 - Reduced interference
 - Packet beams deliver capacity directly to clients rather than floor space
 - Space, time and channel multiplexing to drive parallel capacity
- > Standard IEEE 802.11 b/a/g client NIC h/w and s/w
- > Integrated packaging
 - "Plasma TV" with gigE and power
 - Replaces a "Sea of APs, lots of wire, gigE switch, security controller and most of the labor - all rolled up"

Vivato Wi-Fi Switch

Enterprise Switch Functionality

- > Fully integrated package
 - · Phased array antenna
 - Layer 2 and 3 packet switch
 - > IEEE 802.11 b/g/a
 - > VLAN, VPN, QoS, security, mesh routing, roaming, authentication
 - > Wireless or Ethernet backhaul
- > Simultaneous packet beams
 - · High throughput
 - > 33 Mb/s 802.11b
 - > 162 Mb/s 802.11g
 - > 270 Mb/s 802.11a
 - 2.4 GHz or 5 GHz
 - · 25 dBi gain
- > Hundreds of simultaneous clients
- > Integrated network management
 - · Support for legacy APs
 - Rogue AP/client detection and mapping

> Packaging

- Indoor, outdoor, building side, rooftop, tower
- > Switch has 100 degree FOV
- Multiple panels per switch to scale reliability, capacity

Wi-fi EVERVWHERE

Target Customers

> Enterprises

- Lowest cost, highest performance Wi-Fi deployments
 - > Lowest cost of deployment and ownership
 - > Fewer, higher performance, greater range switches
 - >802.11b -> 802.11a/g transition

> Service Providers

- Gb/s at the end of the fiber
 - > Low cost of incremental deployment
- Public Access Wi-Fi LANs
 - > airports, hotels, downtowns, business parks, residential neighborhoods

> Wi-Fi Carrier

- Wi-Fi Packet Tone everywhere
- Low cost ubiquitous broadband data service

Vivato Wi-Fi Switch Scaled Deployment Options

> Most cost effective Wi-Fi solution for single floors, entire buildings, the whole campus, and beyond

Vivato's New Wi-Fi Economics Enterprise Deployment

- > Lowest Cost of Coverage by a factor of 2 to 5
- > Scalable Capacity
 - · Capacity dynamically follows users
 - > Bandwidth follows the clients
 - > Floor, building and campus coverage with a single, upgradeable uni

- · Manage one network element instead of many
 - > Vivato Wi-Fi switch is the edge LAN switch, Access Gateway, Zone controller and many APs integrated into a single device
 - > Reduced System Complexity
 - > Want redundancy? Buy two.
- Comprehensive, standards based management tools
- Manage legacy APs for security and configuration
- > Security
 - CHAP, MS-CHAP V2, MS MPPE, IPSEC, 802.1x+EAP
 - Uses existing MS clients (XP, 2000, NT, etc.)
- > Maintainability
 - Single point for SW/FW upgrades, network configuration

WILLEYERYWHERE

Vivato's New Wi-Fi Economics
Campus and Wide-Area Deployment

- > Lowest Cost of Coverage by a factor of 5
- > Scalable Capacity
 - Placed where it is needed
 - > Bandwidth follows the clients
 - > Floor, building and campus coverage with a single, upgradeable unit
- > Manageability
 - Manage one network element instead of many
 - Comprehensive, standards based management tools
 - Manage legacy APs for security and configuration
- > Security
 - CHAP, MS-CHAP V2, MS MPPE, IPSEC, 802.1x+EAP
 - Uses existing MS clients (XP, 2000, NT, etc.)
- > Maintainability
 - Single point for SW/FW upgrades, network configuration

Vivato's Directed Focus

- > Founder of a new category: Wi-Fi Switching
- > Disruptive technology
 - · The New Wi-Fi Physics
 - Low-cost Wi-Fi clients widely integrated into platforms
 - High QoS client performance to 54 Mb/s
 - · Scale capacity to gigabit/s
 - Scale coverage: Enterprise -> Campus -> Metro
 - · Integrated enterprise class management and security
 - · Distinctively valuable intellectual property
- > Disruptive economics
 - Up to 1/5 the CAPEX of alternatives
 - Vastly improved OPEX through integrated function
- > Strong customer demand
 - Large enterprise
 - Public LAN
- > Operational excellence
- > Sound financing
- > The team to deliver on the promise

Property received

7 9 6

Vivato Wi-Fi Switches increase range and

reduce interference.

The Vivato Wi-Fi Switch: Multiple Point-to-Point Links

802.11 Client

Wi-Fi Switch

802.11 Client

- Client location is detected automatically
- An RF beam is aimed at each client based on its angular location on a packet-by-packet basis
- Antenna pattern is shaped to minimize interference
- > Ubiquitous clients transmit omnidirectionally using the lower power point-to-multipoint rules.
 - Standard WLAN cards

802.11 Client

802.11 Client

Vivato Confidential

16

EIRP and Omni Antennas

The Fundamental Issue: EIRP Affects Range

and interference levels at a distance

antenna

For Directive Antennas?

EIRP Affects Range for Directive Antennas Azimuth patterns 10 mW to the 100 mW to the 6 $dBi \leftarrow 1$ microvolt antenna antenna 0 dBi 100 mW to the 10 dBi antenna 1 microvolt Omni has Area is the same Three times higher area than beamed 100 mW to the 20 dBi antenna

Vivato Confidential

18

1 microvolt

WITH EVEN Y WHERE

Area of Coverage is important

- > An omni antenna covers an area approximately three times greater than a narrow beamwidth antenna, for the same power to the antenna.
- > With scattering, "fourth power propagation loss" reduces Switch (narrow beamwidth) coverage area further.
- > Importantly, 1 W omnidirectional APs have much larger coverage area than 100 mW narrow beam Wi-Fi Switches with high gain antennas.

Wi-Fi EVERYWHERE

Maximum distance to interfered stations?

>For example, assume interference is measured 1 km away from the edge of coverage.

>How does a Wi-Fi Switch compare to a "Sea of Access points"?

32 APs Interfere Constantly

Conclusion: Switch and 32 APs produce the same level of interference. -92 dBm

A "Sea of APs" vs a Wi-Fi Switch

- > Two scenarios for deployment:
 - · A "Sea of Access Points"
 - One Wi-Fi Switch
- If interference is measured 1 km away from the edge of coverage, the sea of APs will add their power (always on, unless quiet due to interference, in 360°).
- > The Wi-Fi Switch will direct energy with narrow beams and rarely interfere (energy would have to be directed along bearing to radar).
- > The Wi-Fi Switch, with its higher directivity/gain will detect and avoid radar much farther away than any AP.

W:-F: EVERYWHERE

Advantages of Wi-Fi Switches

- > Narrow beamwidth spatially filters energy.
- > High Wi-Fi Switch gain allows distant RADARs to be detected.
- > Dynamic Frequency Selection can be done directionally.
- > Transmit Power Control can be done directionally.
- > Switches continue to work gracefully without interfering. Omni systems may entirely stop.
- > Total power to the Switch antenna is approximately equal to a client station's power (~ 150 mW), and can be controlled (tx power) to just include the zone of coverage.

In Summary

- > Proliferation of omni radiators (APs) causes tremendous interference (not optimal).
- > Remedy: Direct the energy only where (narrow beam) needed, and transmit only when needed using DFS and tx power control techniques.
- > If there are clients, then there will be omnidirected energy. APs cause omni interference (more power = more interference).
- > Thus, if high gain, narrow beamwidth antennas (Wi-Fi Switches) are foreclosed, the likelihood of the "sea of APs" is heightened; a sub-optimal scenario for interference mitigation, and debilitating to the future of Wi-Fi.

VERYWHER П

Vivato

Wi-Fi Switches

Scaling Wi-Fi for Success